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Abstract—We consider algorithms and recovery guarantees for
the analysis sparse model in which the signal is sparse with respect
to a highly coherent frame. We consider the use of a monotone
version of the fast iterative shrinkage-thresholding algorithm
(MFISTA) to solve the analysis sparse recovery problem. Since
the proximal operator in MFISTA does not have a closed-form
solution for the analysis model, it cannot be applied directly.
Instead, we examine two alternatives based on smoothing and
decomposition transformations that relax the original sparse
recovery problem, and then implement MFISTA on the relaxed
formulation. We refer to these two methods as smoothing-based
and decomposition-based MFISTA. We analyze the convergence
of both algorithms and establish that smoothing-based MFISTA
converges more rapidly when applied to general nonsmooth
optimization problems. We then derive a performance bound on
the reconstruction error using these techniques. The bound proves
that our methods can recover a signal sparse in a redundant tight
frame when the measurement matrix satisfies a properly adapted
restricted isometry property. Numerical examples demonstrate
the performance of our methods and show that smoothing-based
MFISTA converges faster than the decomposition-based alterna-
tive in real applications, such as MRI image reconstruction.

Index Terms—Analysis model, convergence analysis, fast itera-
tive shrinkage-thresholding algorithm, restricted isometry prop-
erty, smoothing and decomposition, sparse recovery.

I. INTRODUCTION

L OW-DIMENSIONAL signal recovery exploits the fact
that many natural signals are inherently low dimensional,

although they may have high ambient dimension. Prior infor-
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mation about the low-dimensional space can be exploited to
aid in recovery of the signal of interest. Sparsity is one of the
popular forms of prior information, and is the prior that under-
lies the growing field of compressive sensing [1]–[4]. Recovery
of sparse inputs has found many applications in areas such as
imaging, speech, radar signal processing, sub-Nyquist sampling
and more. A typical sparse recovery problem has the following
linear form:

(1)

in which is a measurement matrix, is the
measurement vector, and represents the noise term.
Our goal is to recover the signal . Normally we have

, which indicates that the inverse problem is ill-posed and
has infinitely many solutions. To find a unique solution, prior
information on must be incorporated.
In the synthesis approach to sparse recovery, it is assumed that
can be expressed as a sparse combination of known dictionary

elements, represented as columns of a matrix with
. That is with sparse, i.e., the number of

non-zero elements in is far less than the length of . The
main methods for solving this problem can be classified into
two categories. One includes greedy methods, such as iterative
hard thresholding [5] and orthogonal matching pursuit [6]. The
other is based on relaxation-type methods, such as basis pursuit
[7] and LASSO [8]. These methods can stably recover a sparse
signal when the matrix satisfies the restricted isometry
property (RIP) [9]–[11].
Recently, an alternative approach has became popular, which

is known as the analysis method [12], [13]. In this framework,
we are given an analysis dictionary under
which is sparse. Assuming, for example, that the norm
of the noise is bounded by , the recovery problem can be
formulated as

(2)

Since this problem is NP hard, several greedy algorithms have
been proposed to approximate it, such as thresholding [14] and
subspace pursuit [15].
Alternatively, the nonconvex norm can be approximated

by the convex norm leading to the following relaxed problem,
referred to as analysis basis pursuit (ABP):

(3)

ABP is equivalent to the unconstrained optimization

(4)
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which we call analysis LASSO (ALASSO). The equivalence is
in the sense that for any there exists a for which the
optimal solutions of ABP and ALASSO are identical.
Both optimization problems ABP and ALASSO can be

solved using interior point methods [16]. However, when
the problem dimension grows, these techniques become very
slow since they require solutions of linear systems. Another
suggested approach is based on alternating direction method
of multipliers (ADMM) [17], [18]. The efficiency of this
method highly depends on nice structure of the matrices .
Fast versions of first-order algorithms, such as the fast it-
erative shrinkage-thresholding algorithm (FISTA) [19], are
more favorable in dealing with large dimensional data since
they do not require to have any structure. The difficulty
in directly applying first-order techniques to ABP (3) and
ALASSO (4) is the fact that the nonsmooth term is
inseparable. A generalized iterative soft-thresholding algorithm
was proposed in [20] to tackle this difficulty. However, this
approach converges relatively slow as we will show in one of
our numerical examples. A common alternative is to transform
the nondifferentiable problem into a smooth counterpart. In
[21], the authors used Nesterov’s smoothing-based method
[22] in conjunction with continuation (NESTA) to solve ABP
(3), under the assumption that the matrix is an orthogonal
projector. In [23], a smoothed version of ALASSO (4) is solved
using a nonlinear conjugate gradient descent algorithm. To
avoid imposing conditions on , we focus in this paper on the
ALASSO formulation (4).
It was shown in [24] that one can apply any fast first-order

method that achieves an -optimal solution within iter-
ations, to an smooth-approximation of the general nonsmooth
problem and obtain an algorithm with iterations. In this
paper, we choose a monotone version of FISTA (MFISTA)
[25] as our fast first-order method, whose objective function
values are guaranteed to be non-increasing. We apply the
smoothing approach together with MFISTA leading to the
smoothing-based MFISTA (SFISTA) algorithm. We also pro-
pose a decomposition-based MFISTA method (DFISTA) to
solve the analysis sparse recovery problem. The decomposi-
tion idea is to introduce an auxiliary variable in (4) so that
MFISTA can be applied in a simple and explicit manner. This
decomposition approach can be traced back to [26], and has
been widely used for solving total variation problems in the
context of image reconstruction [27].
Both smoothing and decomposition based algorithms for

nonsmooth optimization problems are very popular in the liter-
ature. One of the main goals of this paper is to examine their
respective performance. We show that SFISTA requires lower
computational complexity to reach a predetermined accuracy.
Our results can be applied to a general model, and are not
restricted to the analysis sparse recovery problem.
In the context of analysis sparse recovery, we show in

Section II-C that both smoothing and decomposition tech-
niques solve the following optimization problem:

(5)

which we refer to as relaxed ALASSO (RALASSO). Another
contribution of this paper is in proving recovery guarantees for
RALASSO (5). With the introduction of the restricted isometry
property adapted to (D-RIP) [12], previous work [12], [28]
studied recovery guarantees based on ABP (3) and ALASSO
(4). Here we combine the techniques in [9] and [28], and ob-
tain a performance bound on RALASSO (5). We show that
when and , the solution
of RALASSO (5) satisfies

(6)

where is the number of rows in , are constants,
and we use to denote the vector consisting of the largest
entries of . As a special case, choosing extends the
bound in (6) and obtains the reconstruction bound for ALASSO
(4) as long as , which improves upon the results
of [28].
The paper is organized as follows. In Section II, we intro-

duce somemathematical preliminaries, and present SFISTA and
DFISTA for solving RALASSO (5). We analyze the conver-
gence behavior of these two algorithms in Section III, and show
that SFISTA converges faster than DFISTA for a general model.
Performance guarantees on RALASSO (5) are developed in
Section IV. Finally, in Section V we test our techniques on nu-
merical experiments to demonstrate the effectiveness of our al-
gorithms in solving the analysis recovery problem. We show
that SFISTA performs favorably in comparison with DFISTA.
A continuation method is also introduced to further accelerate
the convergence speed.
Throughout the paper, we use capital italic bold letters to

represent matrices and lowercase italic bold letters to represent
vectors. For a given matrix , denotes the conjugate ma-
trix. We denote by the matrix that maintains the rows in

with indices in set , while setting all other rows to zero.
Given a vector , are the norms respectively,

counts the number of nonzero components which will be
referred to as the norm although it is not a norm, and
denotes the maximum absolute value of the elements in . We
use to represent the th element of . For a matrix , is

the induced spectral norm, and Finally,

We use to
denote or , whichever yields a smaller function value of .

II. SMOOTHING AND DECOMPOSITION FOR ANALYSIS
SPARSE RECOVERY

In this section we present the smoothing-based and decom-
position-based methods for solving ALASSO (4). To do so,
we first recall in Section II-A some results related to proximal
gradient methods that will be essential to our presentation and
analysis.

A. The Proximal Gradient Method

We begin this section with the definition of Moreau’s prox-
imal (or “prox”) operator [29], which is the key step in defining
the proximal gradient method.
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Given a closed proper convex function ,
the proximal operator of is defined by

(7)

The proximal operator can be computed efficiently in many im-
portant instances. For example, it can be easily obtained when
is an norm ( ), or an indicator of “simple” closed

convex sets such as the box, unit-simplex and the ball. More ex-
amples of proximal operators as well as a wealth of properties
can be found, for example, in [30], [31].
The proximal operator can be used in order to compute

smooth approximations of convex functions. Specifically, let
be a closed, proper, convex function, and let be a given
parameter. Define

(8)

It is easy to see that

(9)

The function is called theMoreau envelope of and has the
following important properties (see [29] for further details):
• .
• is continuously differentiable and its gradient is Lips-
chitz continuous with constant .

• The gradient of is given by

(10)

One important usage of the proximal operator is in the prox-
imal gradientmethod that is aimed at solving the following com-
posite problem:

(11)

Here is a continuously differentiable convex func-
tion with a continuous gradient that has Lipschitz constant :

and is an extended-valued, proper, closed
and convex function. The proximal gradient method for solving
(11) takes the following form (see [19], [32]):

Proximal Gradient Method For Solving (11)

Input: An upper bound .

Step 0. Take .

Step . ( )

Compute .

The main disadvantage of the proximal gradient method is
that it suffers from a relatively slow rate of conver-
gence of the function values. An accelerated version is the fast
proximal gradient method, also known in the literature as fast
iterative shrinkage thresholding algorithm (FISTA) [19], [32].

When , the problem is smooth, and FISTA coincides with
Nesterov’s optimal gradient method [33]. In this paper we im-
plement a monotone version of FISTA (MFISTA) [25], which
guarantees that the objective function value is non-increasing
along the iterations.

Monotone FISTA Method (MFISTA) For Solving (11)

Input: An upper bound .

Step 0. Take .

Step . ( ) Compute

.

.

.

.

The rate of convergence of the sequence generated by
MFISTA is .
Theorem II.1: [25] Let be the sequence generated

by MFISTA, and let be an optimal solution of (11). Then

(12)

B. The General Nonsmooth Model

The general optimization model we consider in this paper is

(13)

where is a continuously differentiable convex
function with a Lipschitz continuous gradient . The func-
tion is a closed, proper convex function
which is not necessarily smooth, and is a given
matrix. In addition, we assume that is Lipschitz continuous
with parameter :

This is equivalent to saying that the subgradients of over
are bounded by :

An additional assumption we make throughout is that the prox-
imal operator of for any can be easily computed.
Directly applying MFISTA to (13) requires computing the

proximal operator of . Despite the fact that we assume
that it is easy to compute the proximal operator of , it is
in general difficult to compute that of . Therefore we
need to transform the problem before utilizing MFISTA, in
order to avoid this computation.
When considering ALASSO, and

. The Lipschitz constants are given by
and . The proximal operator of
can be computed as

(14)
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where for brevity, we denote the soft shrinkage operator by
Here denotes the vector whose components are

given by the maximum between and 0. Note, however, that
there is no explicit expression for the proximal operator of

, i.e., there is no closed form solution to

(15)

In the next subsection, we introduce two popular approaches
for transforming the problem (13): smoothing and decomposi-
tion. We will show in Sections II-D and II-E that both transfor-
mations lead to algorithms which only require computation of
the proximal operator of , and not that of .

C. The Smoothing and Decomposition Transformations

The first approach to transform (13) is the smoothing method
in which the nonsmooth function is replaced by its Moreau
envelope , which can be seen as a smooth approximation.
By letting , the smoothed problem becomes

(16)

to which MFISTA can be applied since it only requires evalu-
ating the proximal operator of . From the general properties
of the Moreau envelope, and from the fact that the norms of the
subgradients of are bounded above by , we can deduce that
there exists some , such that and

(see [22],
[24]). This shows that a smaller leads to a finer approximation.
The second approach for transforming the problem is the de-

composition method in which we consider:

(17)
With , this problem is equivalent to the following con-
strained formulation of the original problem (13):

(18)

Evidently, there is a close relationship between the approxi-
mate models (16) and (17). Indeed, fixing and minimizing the
objective function of (17) with respect to we obtain

(19)

Therefore, the two models are equivalent in the sense that
their optimal solution set (limited to ) is the same when

. For analysis sparse recovery, both transformations
lead to RALASSO (5). However, as we shall see, the resulting
smoothing-based and decomposition-based algorithms and
their analysis are very different.

D. The Smoothing-Based Method

Since (16) is a smooth problem we can apply an optimal
first-order method such as MFISTA with

and in (11). The Lipschitz constant of is

given by , and according to (10) the gradient of
is equal to . The expres-

sion is calculated by first computing ,
and then letting .
Returning to the analysis sparse recovery problem, after

smoothing we obtain

(20)

where

The function with parameter is the so-called
Huber function [34], and is given by

if
otherwise.

(21)

From (14), the gradient of is equal to

(22)

Applying MFISTA to (20), results in the SFISTA algorithm,
summarized in Algorithm 1.

Algorithm 1: Smoothing-based MFISTA (SFISTA)

Input: An upper bound .

Step 0. Take .

Step . ( ) Compute

.

.

.

.

.

.

E. The Decomposition-Based Method

We can also employ MFISTA on the decomposition model

(23)

where we take the smooth part as
and the nonsmooth part as . In order

to apply MFISTA to (17), we need to compute the proximal
operator of for a given constant , which is given by

(24)
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In RALASSO (5), and
. Therefore,

(25)

The Lipschitz constant of is equal to .
By applying MFISTA directly, we have the DFISTA algorithm,
stated in Algorithm 2.

Algorithm 2: Decomposition-based MFISTA (DFISTA)

Input: An upper bound .

Step 0. Take .

Step . ( ) Compute

.

.

.

.

.

.

.

.

III. CONVERGENCE ANALYSIS

In this section we analyze the convergence behavior of
both the smoothing-based and decomposition-based methods.
Convergence of smoothing algorithms has been treated in
[22], [24]. In order to make the paper self contained, we quote
the main results here. We then analyze the convergence of
the decomposition approach. Both methods require the same
type of operations at each iteration: the computation of the
gradient of the smooth function , and of the proximal operator
corresponding to , which means that they have the same com-
putational cost per iteration. However, we show that smoothing
converges faster than decomposition based methods. Specifi-
cally, the smoothing-based algorithm is guaranteed to generate
an -optimal solution within iterations, whereas the
decomposition-based approach requires iterations.
We prove the results by analyzing SFISTA and DFISTA for the
general problem (13), however, the same analysis can be easily
extended to other optimal first-order methods, such as the one
described in [22].

A. Convergence of the Smoothing-Based Method

For SFISTA the sequence satisfies the following rela-
tionship [25]:

(26)

where is an upper bound on the expression with
being an arbitrary optimal solution of the smoothed problem

(16), and is the initial point of the algorithm. Of course,

this rate of convergence is problematic since we are more in-
terested in bounding the expression rather than the
expression , which is in terms of the smoothed
problem. Here, stands for the optimal value for original non-
smooth problem (13). For that, we can use the following result
from [24].
Theorem III.1: [24] Let be the sequence generated by

applying MFISTA to the problem (16). Let be the initial point
and let denote the optimal solution of (13). An -optimal so-
lution of (13), i.e., , is obtained in the
smoothing-based method using MFISTA after at most

(27)

iterations with chosen as

(28)

in which and are the Lipschitz constants of and the
gradient function of in (13), and . We use
to denote the optimal solution of problem (16).
Remarks: For analysis sparse recovery using SFISTA,
and , which can be plugged into the expres-

sions in the theorem.

B. Convergence of the Decomposition-Based Method

A key property of the decomposition model (17) is that its
minimal value is bounded above by the optimal value in the
original problem (13).
Lemma III.1: Let be the optimal value of problem (17)

and be the optimal value of problem (13). Then .
Proof: The proof follows from adding the constraint
to the optimization:

(29)

which is equal to .
The next theorem is our main convergence result establishing

that an -optimal solution can be reached after iter-
ations. By assuming that the functions and are nonnega-
tive, which is not an unusual assumption, we have the following
theorem.
Theorem III.2: Let be the sequences generated by

applying MFISTA to (17) with both and both being nonneg-
ative functions. The initial point is taken as with

. Let denote the optimal solution of the original problem
(13). An -optimal solution of problem (13), i.e.,

, is obtained using the decomposition-based method
after at most

(30)



TAN et al.: SMOOTHING AND DECOMPOSITION FOR ANALYSIS SPARSE RECOVERY 1767

iterations of MFISTA with chosen as

(31)

Here and are the Lipschitz constants for and the gra-
dient function of in (13), and .
We use to denote the optimal solutions to (17).

Proof: Since the monotone version of FISTA is applied we
have

(32)

With the assumption that and are nonnegative, it follows
that

and therefore

(33)

The gradient of , is Lipschitz continuous
with parameter . According to [25], by
applying MFISTA, we obtain a sequence satisfying

Using lemma III.1 and the notation

we have

(34)

We therefore conclude that

The first inequality follows from the Lipschitz condition for the
function , the second inequality is obtained from (34), and the
last inequality is a result of (33).
We now seek the “best” that minimizes the upper bound, or

equivalently, minimizes the term

(35)

where and . Setting the derivative

to zero, the optimal value of is , and

(36)

Therefore, to obtain an -optimal solution, it is enough that

(37)

or

(38)

completing the proof.
Remarks:
1. As in SFISTA, when treating the analysis sparse recovery
problem, and , which again can
be plugged into the expressions in the theorem.

2. MFISTA is applied in SFISTA and DFISTA to guarantee
a mathematical rigorous proof, i.e., the existence of (32).
In real application, FISTA without monotone operations
can also be applied to yield corresponding smoothing and
decomposition based algorithms.

Comparing the results of smoothing-based and decom-
position-based methods, we immediately conclude that the
smoothing-based method is preferable. First, it requires only

iterations to obtain an -optimal solution whereas the
decomposition approach necessitates iterations.
Note that both bounds are better than the bound
corresponding to general sub-gradient schemes for nonsmooth
optimization. Second, the bound in the smoothing approach
depends on , and not on , as when using decompo-
sition methods. This is important since, for example, when

, we have . In the smoothing approach the
dependency on is of the form and not , as when using
the decomposition algorithm.

IV. PERFORMANCE BOUNDS

We now turn to analyze the recovery performance of analysis
LASSO when smoothing and decomposition are applied. As we
have seen, both transformations lead to the same RALASSO
problem in (5). Our main result in this section shows that the
reconstruction obtained by solving RALASSO is stable when

has rapidly decreasing coefficients and the noise in the
model (1) is small enough. Our performance bound also depends
on the choice of parameter in the objective function. Before
stating the main theorems, we first introduce a definition and
some useful lemmas, whose proofs are detailed in the Appendix.
To ensure stable recovery, we require that the matrix satis-

fies the D-RIP:
Definition IV.1: (D-RIP) [12]. The measurement matrix

obeys the restricted isometry property adapted to with con-
stant if

(39)
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holds for all . In other
words, is the union of subspaces spanned by all subsets of
columns of .
The following lemma provides a useful inequality for ma-

trices satisfying D-RIP.
Lemma IV.1: Let satisfy the D-RIP with parameter ,

and assume that . Then,

(40)

In the following, denotes the optimal solution of
RALASSO (5) and is the original signal in the linear
model (1); we also use to represent the reconstruction error

. Let be the indices of coefficients with largest
magnitudes in the vector , and denote the complement of
by . Setting , we decompose into sets of size
where denotes the locations of the largest coefficients

in , denote the next largest coefficients and so on.
Finally, we let .
Using the result of Lemma IV.1 and the inequality

since and
are disjoint, we have the following lemma.
Lemma IV.2: (D-RIP property) Let be the re-

construction error in RALASSO (5). We assume that satisfies
the D-RIP with parameter and is a tight frame. Then,

(41)

Finally, the lemmas below show that the reconstruction error
and can not be very large.
Lemma IV.3: (Optimality condition) The optimal solution

for RALASSO (5) satisfies

(42)

Lemma IV.4: (Cone constraint) The optimal solution for
RALASSO (5) satisfies the following cone constraint,

(43)

We are now ready to state our main result.
Theorem IV.1: Let be an measurement matrix,

an arbitrary tight frame, and let satisfy the D-RIP with
. Consider the measurement , where

is noise that satisfies . Then the solution
to RALASSO (5) satisfies

(44)

for the decomposition transformation and

(45)

for the smoothing transformation. Here is the vector
consisting of the largest entries of in magnitude, and
are constants depending on , and depends on and

.

Proof: The proof followsmainly from the ideas in [9], [28],
and proceeds in two steps. First, we try to show that inside

is bounded by the terms of outside the set . Then we
show that is essentially small.
From Lemma IV.2,

(46)

Using the fact that , we obtain
that

(47)

with . The second inequality is a result of
Lemma IV.3 and the fact that , in
which is the number of nonzero terms in . Combining
(46) and (47), we get

(48)

Then the second step bounds . From (48),

(49)

Finally, using Lemma IV.4 and (49),

(50)
Since , we have . Rear-
ranging terms, the above inequality becomes

(51)

We now derive the bound on the reconstruction error. Using
the results of (48) and (51), we get

(52)

The first equality follows from the assumption that is a tight
frame so that . The first inequality is the result of the
triangle inequality. The second inequality follows from (48) and
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the fact that , which is proved
in (58) in the Appendix. The constants in the final result are
given by

To obtain the error bound for the smoothing transformation
we replace with in the result.
Choosing in RALASSO (5) leads to the ALASSO

problem for which . We then have the following result.
Theorem IV.2: Let be an measurement matrix,

an arbitrary tight frame, and let satisfy the D-RIP with
. Consider the measurement , where

is noise that satisfies . Then the solution
to ALASSO (4) satisfies

(53)

where is the vector consisting of the largest entries of
in magnitude, is a constant depending on , and

depends on and .
Remarks:
1. When the noise in the system is zero, we can set as a
positive value which is arbitrarily close to zero. The solu-

tion then satisfies , which
parallels the result for the noiseless synthesis model in [9].

2. When is a tight frame, we have . Therefore by
letting , we can reformulate the original analysis
model as

(54)

Assuming that the noise term satisfies the norm con-
straint , we have

(55)
When satisfies D-RIP with , by letting

we have

(56)

This result has a form similar to the reconstruction error
bound shown in [9]. However, the specific constants are
different since in [9] the matrix is required to sat-
isfy the RIP, whereas in our paper we require only that the
D-RIP is satisfied.

3. A similar performance bound is introduced in [28] and
shown to be valid when . Using Corollary 3.4
in [35], this is equivalent to . Thus the results
in Theorem IV.2 allow for a looser constraint on ALASSO
recovery.

4. The performance bound of Theorem IV.1 implies that a
larger choice of , or a smaller parameter , leads to a
smaller reconstruction error bound. This trend is intuitive
since large or small results in smaller model inaccu-
racy. However, a larger or a smaller leads to a larger
Lipschitz constant and thus results in slower convergence
according to Theorem II.1. The idea of parameter continu-
ation [36] can be introduced to both and to accelerate
the convergence while obtaining a desired reconstruction
accuracy. More details will be given in the next section.

V. NUMERICAL RESULTS

In the numerical examples, we use both randomly generated
data and MRI image reconstruction to demonstrate that SFISTA
performs better than DFISTA. In the last example we also intro-
duce a continuation technique to further speed up convergence
of the smoothing-based method. We further compare SFISTA
with the existing methods in [18], [20], [23] using MRI image
reconstruction, and show its advantages.

A. Randomly Generated Data in a Noiseless Case

In this simulation, the entries in the measurement ma-
trix were randomly generated according to a normal distribu-
tion. The matrix is a random tight frame. First we gener-
ated a matrix whose elements follow an i.i.d. Gaussian dis-
tribution. Then QR factorization was performed on this random
matrix to yield the tight frame with ( comprises
the first columns from , which was generated from the QR
factorization).
In the simulation we let and , and we also

set the values of and the number of zero terms named in
according to the following formula:

(57)

We varied and from 0.1 to 1, with a step size 0.05. We set
, for the smoothing-based method,

and for the decomposition-based method. is set

to be for smoothing and
for decomposition. For every combination of and , we ran a
Monte Carlo simulation 50 times. Each algorithm ran for 3000
iterations, and we computed the average reconstruction error.
The reconstruction error is defined by , in which is the
reconstructed signal using smoothing or decomposition and is
the original signal in (1).
The average reconstruction error for smoothing and decom-

position are plotted in Figs. 1 and 2, respectively. White pixels
present low reconstruction error whereas black pixels mean
high error. Evidently, see that with same number of iterations,
SFISTA results in a better reconstruction than DFISTA.

B. MRI Image Reconstruction in a Noisy Case

The next numerical experiment was performed on a noisy
256 256 Shepp Logan phantom. The image scale was normal-
ized to . The additive noise followed a zero-mean Gaussian
distribution with standard deviation . Due to the high
cost of sampling in MRI, we only observed a limited number
of radial lines of the phantom’s 2D discrete Fourier transform.
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Fig. 1. Reconstruction error of SFISTA.

Fig. 2. Reconstruction error of DFISTA.

The matrix consists of all vertical and horizontal gradi-
ents, which leads to a sparse . We let in the
optimization. We tested this MRI scenario with values of

for SFISTA and

for DFISTA. is set to be for SFISTA
and for DFISTA. We took the samples
along 15 radial lines to test these two methods.
In Fig. 3 we plot the objective as a

function of the iteration number. It can be seen that the objec-
tive function of SFISTA decreases more rapidly than DFISTA.
Furthermore, with smaller and larger , DFISTA and SFISTA
converge faster. Then we computed the reconstruction error.
Here we see that smaller and larger lead to a more accurate
reconstruction. We can see that SFISTA converges faster than
DFISTA, which follows the convergence results in Section III.
Next, we compared SFISTAwith the nonlinear conjugate gra-

dient descend (CGD) algorithm proposed in [23]. The CGD also
needs to introduce a smoothing transformation to approximate
the term , and in this simulation the Moreau envelop
with was used to smooth this term. We can see
from Fig. 5 that SFISTA converges faster than the CGD in terms
of CPU time. CGD is slower because in each iteration, a back-
tracking line-search is required, which reduces the algorithm
efficiency.

Fig. 3. The objective function for MRI reconstruction on Shepp Logan.

Fig. 4. Reconstruction error for SFISTA and DFISTA with different
parameters.

C. Acceleration by Continuation

Algorithm 3: Continuation with SFISTA

Input: , the starting parameter ,

the ending parameter and .

Step 1. run SFISTA with and initial point .

Step 2. Get the solution and let .

Until. .

To accelerate convergence and increase the accuracy of re-
construction, we consider continuation on the parameter for
SFISTA, or on for DFISTA. From Theorem IV.1, we see
that smaller results in a smaller reconstruction error. At the
same time, smaller leads to a larger Lipschitz constant
in Theorem II.1, and thus results in slower convergence. The
idea of continuation is to solve a sequence of similar problems
while using the previous solution as a warm start. Taking the
smoothing-based method as an example, we can run SFISTA
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Fig. 5. Reconstruction error for SFISTA and CGD with respect to CPU time.

Fig. 6. Convergence comparison among SFISTA with and without continua-
tion, GIST and SALSA.

with . The continuation method is
given in Algorithm 3. The algorithm for applying continuation
on DFISTA is the same.
We tested the algorithm on the Shepp Logan image from the

previous subsection with the same setting, using SFISTA with
and standard SFISTA with .

We implemented the generalized iterative soft-thresholding al-
gorithm (GIST) from [20]. We also included an ADMM-based
method, i.e., the split augmented Lagrangian shrinkage algo-
rithm (SALSA) [18]. SALSA requires solving the proximal op-
erator of , which is nontrivial. In this simulation, we
implemented 40 iterations of the Fast GP algorithm [25] to ap-
proximate this proximal operator. Without solving the proximal
operator exactly, the ADMM-based method can converge very
fast while the accuracy of reconstruction is compromised as we
show in Fig. 6. In this figure we plot the reconstruction error
for these four algorithms. It also shows that continuation helps
speed up the convergence and exhibits better performance then

Fig. 7. Reconstructed Shepp Logan with SFISTA using continuation.

GIST. The reconstructed Shepp Logan phantom using continu-
ation is presented in Fig. 7, with reconstruction error 3.17%.

VI. CONCLUSION

In this paper, we proposed methods based on MFISTA to
solve the analysis LASSO optimization problem. Since the
proximal operator in MFISTA for does not have a
closed-form solution, we presented two methods, SFISTA and
DFISTA, using smoothing and decomposition respectively, to
transform the original sparse recovery problem into a smooth
counterpart. We analyzed the convergence of SFISTA and
DFISTA and showed that SFISTA converges faster in general
nonsmooth optimization problems. We also derived a bound
on the performance for both approaches assuming a tight
frame and D-RIP. Our methods were demonstrated via several
simulations. With the application of parameter continuation,
these two algorithms are suitable to solve large scale problems.

APPENDIX

Proof of Lemma IV.1: Without loss of generality we as-
sume that and . By the definition of D-RIP,
we have

Now it is easy to extend this equation to get the desired result.
Proof of Lemma IV.2: From the definition of we have
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for all . Summing leads to

(58)

Now, considering the fact that is a tight frame, i.e.,
, and that the D-RIP holds,

Using the result from Lemma IV.1, we can bound the last two
terms in the above inequality; hence, we derive

(59)

By definition of , we have

Combining this equation with (59) results in

Using the fact that when is a tight frame,
, we have

Since (because and
are disjoint), we conclude that

which along with inequality (58) yields the desired result given
by

Proof of Lemma IV.3: The subgradient optimality condi-
tion for RALASSO (5) can be stated as

(60)

(61)

where is a subgradient of the function and consequently
. Combining (60) and (61), we have

Multiplying both sides by , we get

(62)

The first inequality follows from the fact that . With
the assumption that , and the triangle in-
equality, we have

(63)

Proof of Lemma IV.4: Since and solve the optimiza-
tion problem RALASSO (5), we have,

Since and , it follows that

Expanding and rearranging the terms in the above equation, we
get
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Using (61) to replace the terms with , we have

Since , we have

(64)

The second inequality follows from the fact that

is maximized when every element of is 1.
Now, with the assumption that is a tight frame, we have the
following relation:

This inequality follows from the fact that
. Using the assumption that , we

get

(65)

Applying inequalities (64) and (65), we have

which is the same as,

Since we have , it follows that

and hence

Applying the triangle inequality to the left handside of above
inequality, we results in

After rearranging the terms, we have the following cone
constraint,

(66)
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